La sécurisation des données intervient à chaque instant dans de très nombreux domaines de la vie privée ou publique et représente un enjeu stratégique pour les entreprises, les grands groupes industriels, les banques ou encore l’État. Les protocoles utilisés aujourd’hui pour le chiffrement et le déchiffrement des messages utilisent des codes mathématiques de plus en plus complexes avec des clefs publiques de plus en plus longues, à mesure qu’augmente la puissance des ordinateurs (classiques) capables de les casser. L’avènement possible de l’ordinateur quantique impose de recourir à d’autres méthodes. Des algorithmes quantiques, implémentés sur un tel ordinateur, mettraient en effet aisément à mal les protocoles classiques.
La promesse de l’inviolabilité des communications
La cryptographie quantique, qui repose sur la transmission de qubits générés aléatoirement, assure l’inviolabilité des échanges en toutes circonstances. Ces qubits constituent des clefs, qui sont ensuite utilisées dans des protocoles de chiffrement classiques. Dans la mesure où il est impossible de cloner une information quantique sans qu’elle soit détruite, ou de mesurer un état quantique sans le modifier, la lecture de l’information par un intrus serait immédiatement détectée par les destinataires du message.
Pour envoyer des qubits sur de grandes distances, le support privilégié est le photon, qui autorise l’encodage de l’information sur des variables observables telles que la polarisation de la lumière.

La rencontre, à la fin des années 1980, de l’optique quantique et de l’optique non-linéaire a permis le développement de nouvelles sources de photons uniques et intriqués, compactes, efficaces et simples d’utilisation. D’autres techniques ont également vu le jour, autorisant la fabrication et l’exploitation d’émetteurs artificiels, tels que les boîtes quantiques semi-conductrices ou les centres colorés dans les cristaux de diamant.